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I. Introduction 

This article is in sequel to our investigation I11 of the evolution of type II Neveu- 

Schwara-Ramond superstringl’l in the background of the graviton and antisymmetric 

tensor fields[3] within the first quantized framework. We have obtained the constraints 

and their classical algebras in a systematic manner in I. Furthermore, we have pre- 

sented the classical BRST charge which is nilpotent by construction. The purpose 

of the pr esent paper is to derive the consequences of the nilpotency of the quantum 

BRST charge. As is well known, all string theories are required to be conformally 

invariant and this condition imposes stringent constraints on the background field 

configurations when we consider evolution of strings in the presence of background 

fields.[‘] One of the ways to impose conformal invariance is to demand the vanishing of 

the associated p-functions of the theory lsl which in turn corresponds to the equations 

of motion satisfied by the background fields. On the other hand, a more transparent 

and algebraic way of imposing conformal invariance on the theory is to demand the 

nilpotency of the quantum BRST charge. 1’1 Indeed, the nilpotency of the quantum 

BRST charge guarantees that all unphysical degrees of freedom are decoupled from 

the theory, ensuring the unitarity of the S-matrix. The critical dimension, d = 10, 

and the intercepts are derived in an elegant manner in the case of the free N-S-R su- 

perstring if we demand QiRST = 0 at the quantum level. As we shall demonstrate in 

Section IV, for the interacting case, the nilpotency condition leads to the equations of 

motion for the background fields in addition to providing the critical dimensions and 

the intercepts appropriate to the choice of the boundary condition for the world-sheet 

fern&m. 

We may observe here that, whereas the quantum superconformal algebra (nilpo- 
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tency of the quantum BRST charge) for the free N-S-R string yields a c-number 

anomaly, the interacting N-S-R string (string propagating in nontrivial backgrounds) 

gives rise to q-number anomalies. The existence of such q-number anomalies have 

been noticed in the context of a bosonic stringI’ propagating in arbitrary background 

fields and in the case of a type II superstringI*l in a curved background without torsion. 

However, these q-number anomalies disappear on-shell, i.e., when the backgrounds 

satisfy equations of motion. The present work generalizes the results of refs. 7 and 8. 

At this point, some technical remarks are in order. We follow the Batalin, Fradkin 

and Vilkovisky[*l phase-space Hamiltonian formalism in order to obtain the expression 

for the BRST charge from the algebra of constraints. The details of the calculations 

can be found in I. We shall follow the normal ordering prescription similar to ref. 7 

with suitable generalization to include the world-sheet fermions. Furthermore, we 

have adopted the weak field approximation scheme for the target manifold metric 

and the antisymmetric tensor field in order to facilitate the computation[‘Ol of the 

nilpotency of the BRST charge. 

The paper is organized as follows: In Section II, we briefly describe the Batalin- 

Fradkin-Vilkovisky (BFV) formalism for the construction of the BRST charge. In 

Section III, we identify the generators of the superconformal algebra and define the 

quantum operators in the weak field approximation. Section IV deals with BFV- 

BRST quantization of the free N-S-R string and the consequences of the nilpotency 

of BRST charge for the free superstring. We consider the case of an interacting 

string in Section V and obtain the equations of motion for the background fields from 

QL-m = 0. The summary and conclusions of our work is contained in Section VI. 

Our notational convention is given in Appendix A and Appendix B contains some 

steps of calculations of Section IV and Section V for elucidation. 
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II. The BFV-Formalism for Construction of &BRST 

Batalin, Fradkin and Vilkovisky[g] have provided a prescription for constructing 

the BRST charge for a system with a set of first class constraints (4.1 satisfying the 

closed algebra 

I 1 
h, d’b = u:b‘$C (2.1) 

1 > 
Ho, 4. = v.“db (2.2) 

where 4.‘~ are fermionic or bosonic constraints. LTzb and V,” are structure constants 

and Ho is the canonical Hamiltonian. The BRST charge is given by 

QBRST = h?” + $-l)“‘pc&$‘lb (2.3) 

Here 7” and 4 are the phase-space variable and their Grassmann characters are 

opposite to that of 4.. They satisfy 

t I $,Pb = 6; (2.4) 

and na = O(1) for 4. bosonic (fermionic). QBRST as defined in (2.3) is nilpotent by 

construction at the classical level, i.e., QiRST = 0. 

The physical states are projected out through the following relation 

i)sRsrlPhYs >= 0 (2.5) 

provided, at the quantum level, we still have 

QiRsTIstate >= 0 (2.6) 

Here 4 is the quantum charge. We have seen in I that the classical superconformal 

algebra closes for the N-S-R string without any anomaly. 
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III. Super Conformal Algebra for the N-S-R String and the 

Quantum Operators 

The gauge fixed Lagrangian for the N-S-R string in arbitrary background is given 

by[‘] 

+ ;Tp” (a,$’ + r~a~Xk~‘) Gij(X) 

- f&T;jk~ppps@apl~k - ~~jk’~~‘~~l 

- ~DkTJj~~k~‘pS~L - ~G”nT~mT,l,~p,~k~‘~s~l (3.1) 

Tijk is the field strength associated with &j(X). We have chosen the orthonormal 

gw= 

X G = 0 (3.2) 

e,,), being the Zweibein and ,Y~ is the world-sheet gravitino. The Lagrangian (3.1) is 

invariant under the 2-dimensional global supersymmetry transformations 

6*’ = ipua,xie + rjk*k (+) + &G”Tjkc (T’Ps$J~) c (3.3) 

Here c is the infinitesimal fermionic parameter. The generators of the superconformal 

transformations are 

T++ = i [G;j(X)a+X’B,X’ + 2i$$(qa~&$,+B 
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T-- = h [Gija-X’a-Xj + %$f(?aBa,$_B 

- (3.4) 

J+ = Gij(X)a+Xj$i + ;TijkPf Side: 

J- = Gij(X)a-Xj$[ + &Tijk$!$‘!$! (3.5) 

and 8, = & zt %,$i = ;(I F ps)@ and $’ = Ei(X)$A; Ei being the vielbein of 

the target manifold. The spin connections 

ID,!?, = -EjA jet, - r$Ej,EL + ~T:Ej~E:, 

~(2~ = -E. 1, IA BEG - I’$EjAE& - ~T~Ej;IE:, (3.8) 

The generalized curvatures are defined as 

I$&, = -& (1) a (1) (1) P)C 
axk CAB - mwk,.,B + wf.ACwk. ,g - W~&LpB , I (3.7) 

Similarly R$f) Bkf is defined by replacing UJ!~, with WI?, in the above equation (3 7) . . 

The canonical momenta conjugate to X’ and IJJ~ are defined as 

= Gij(X)kj + $Bij(X)X” + ~$!$Bw~~~B 

- ;$~$,“wpJ, 

f3L 
II*:; E T 

a*i 
= fi$iGij(X) 

The fundamental brackets are 

(3.8) 
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(7J(7),~,“(u’)) = *i?p6(a-d) (3.9) 

The second bracket in (3.9) is actually the Dirac bracket where we have taken into 

account the nature of the second class constraint in the definition of the fermion 

canonical momentum. Note that the constraints defined in (3.4) and (3.5) satisfy the 

algebra (classical PB relations) 

J+ (u, r), J* (J, 7) > 
= F2iT*lS (u - d) 

Te (c,r), Ji Cc’, 7) 1 
= ~(zJ*(~,T)+J*(~‘,~))a~s(~-~‘) 

T+i (Q, 7)) T,i Cc’> 7) 
> 

= &(T~~((~,T)+T~~(u’,T))&~(u-u’) (3.10) 

and all other brackets vanish. 

In order to calculate the quantum algebra of the above generators, we go over to 

the interaction representation. In the interaction representation 

k = pj,+ 

(3.11) 

Therefore, 

T ++ = 

+ &B;jG’“B,,X’jX’” - +,“p!f (ii@ + x’j) w$B 

+ iq&b~ti$jB (*@j + x’j) + $P~~Wj~~B~uGkjx~~ 

- 
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- ; (~!&~~“w~~Bw$&G’ + +~&,c~,D~~~~u~j;~~G’j 

- ~_AII1_B~,C~,,DWr,~E~~,~~Gij - ~1,“~,“~~~!?w~,~Ewj~~Dc3j 
> 

+ i$f (~.&,+b,” - w{,~~X”$,B) - ;R$&‘l@$$] (3.12) 

Tee = i kiijGij _ 2~&,yli + Gij,y’ixij _ !$zG~jc~iyf 

+ &Bij@m.ytjp - j&f (j@G’j _ x(j) &fiB 

+ i7/+b~w~,‘~B (iiGij - xfj) + i$$~$fw$f~,~kcGkjx~~ 

- ;W:*,Bwjf!,BkcGkjX” 

- ; (+!ti%“$f&&, + ~~~~~$+&,~~~~~ 

- e%~~c~!w~,~Bw$D - ~~l/lc”*cl,“~~ul~,~BuJ~~~D G’j > 

X”@) - ~R$#$j-$:&] (3.13) 

J+ = $,AE; Gij - &Bij X’j 

- i$‘!‘J’!Wij, + $f$‘fW$c] f &Tijk$hi$$$h: (3.14) 

J- = ~“EA[~‘G~- (Gij+~B.j)X”-~~“ll”wj~, 

+ t,j,B,&(*) 2 + + i,‘vc + I 
&Tijk$Ji$L$! (3.15) 

Now we proceed to express the generators in the weak field approximation 

&A = %A + ik4(X) 
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E; = 6i - $4(X) 

G+(X) = qij + hij(X) 

Bij(X) = bij(X) (3.16) 

and keep terms linear in h;j and bij in the expansions. Furthermore, alI target mani- 

fold world indices are raised and lowered by the flat metric rjj and vij in what follows. 

The spin connections and curvatures take the following form in the linearized approx- 

imation 

Wi,AB (lYin’ = i &pm; + k&bt,,, - ampci c6; 
2 i ) 

(2)lin. _ 
wi,AB - ; 

( 
&pi, + ;a,bn.i - ad 0% 

1 

R!:p = (8&pkj - &ajp& + a&j4 - aj&pk;) 

(3.17) 

(3.18) 

(3.19) 

where 

pij(X) = -hij(X) + g&j(X) 

The linearized form of the generators are 

(3.20) 

T++ = aPip$‘lij + i$fadb+B7AB + ipijP:P! 

- jw~~~$~$,‘_p~ + ..&!lT$;n$: (p+ + p-)’ 

- (3.21) 

T-- = iP!P!Tij + i$,Aao$fTAE + ipijPiP! 

+ iw~,~~$~&pj - -+~~~+~$i (p+ + p-)i 

- (3.22) 
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J+ = $fPiTaj + ~b,j~:P~ + ~p.j~~P1 

- 4,. 2 f,~v&jp+f + ;w~~~$;~p~ 

+ (3.23) 

J- = $AP!qrj + $b;j$!Pj + ipijvi Pi 

- 1,. 2 yp*yy)’ + ;wf-p.$~+~$$ 

+ (3.24) 

The generators can be expanded in Fourier series, the fourier modes are defined as 

follows 

L =’ dZ.T * m 2r / i* ’ ++ 2 (3.25) 

z =-’ m J CT--.- 
2a iZ 

.z (3.26) 

G, = & J dz 
z : J+ : 2” (3.27) 

cm=-1 ~/Zn $:JT 
I 

(3.28) 

,with z = & and z is its complex conjugate. The operators appearing in the definition 

of the generators are normal ordered. The normal ordering prescriptions for the 

Fubini-Veneziano fields [I11 Pi G ($ + X”) and the fermions are given in Appendix 

B. 

IV. Nilpotency of QBRST for the Free N-S-R String 

In this section we present the consequence of the nilpotency of &RST for the 

free N-S-R string and derive the we&known results on the critical dimensions and 
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intercept.[lzl The computation is carried out in terms of the Fubini-Veneziano fields 

and the world- -sheet fermions. This calculation sets the stage for the computation 

of Gin,, for the superstring in a nontrivial background in Section V. Notice that the 

superconformal algebra (3.10) for the interacting string is the same as that of the free 

string (at the classical level). Therefore, the pure ghost sector of the BRST charge 

is the same in both the cases. Therefore, the computation of GiRsT = 0 provides us 

some insight for our next step. 

The BRST charge is 

T++q+ + T--q. + J+X+ + J-X- 

+ P+%ll+9+ -P.&l-l& + iP+X+X+ 

- iP-LX- + ;~+x,B,~+ + C+&X+v+ 

- c-a,x-q- - &x-a+] (4.1) 

The form of QB~~T in (4.1) is evident from the discussion of Section II on BFV for- 

malism and the superconformal algebra (3.10). Here T*,P* are the fermionic ghosts 

and their conjugate momenta associated with the bosonic constraints T&k. Similarly, 

A+ and (* are the bosonic ghosts and their conjugate momenta corresponding to the 

supercharge densities J*. The fundamental Poisson bracket relations are 

(v+(4P+(z’)) = (v- W(“‘)} = 6(z - 4 

(x+(Z)rC+(~‘)}=(X_(Z)IC-(~‘)}=~(Z-~o 

(4.2) 

and all other PB are zero. The mode expansion of the ghosts are 

q+(z) = +f w- 
n=-m 
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v-(r) = +g F-&T” n=-cm 
P+(z) = zi; 12 P”z- 

n---aD 
(4.4) 

P- (2) = & 15 pm;j,s-n n--0D 
A, (2) = ‘c” X,z-n n=-OD 
X-(z) = +e IJ” r&=-m 
C+(z) = ; If f*z-- n--m 
C-(f) = & z -i,F” (4.5) 

n--cm 

useful to write the BRST charge in a modified form which simplifies subsequent 

computations. 

: &RST : = : E (Lh, + xn’,ii-, + GA, + C,,I;-,) : 
n=-m 

+ : F z [mPJhn,-,-m + mFdimi7-,-, 

- P”LL-m + ;(m - n)(J,~-,-, 

- ;(m - 4AL] : 

where we have defined 

L; = -L - &I 

--I 
L = L - P&a 

(4.6) 

(4.7) 
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in order to take into account the ambiguity in the definitions of Lo and To. The con- 

stants Q and p (intercepts) will be eventually determined when we demand &,, = 

0. The modes of the ghosts satisfy quantum relations 

[%>PJ+ = [TLJL]+ = 6,,-* 

~&]- = [LQ = CL,-, 

The generators of the free N-S-R string are 

~’ = -~ 4 ~~ : [aP~P~?ij + i~fa,~“rl,,] : 

dz 
Go) = ~ ;Izrn : ~~P~~Aj : ! 

.! 
dz 
z-i* Z *!Plqlj Z 

and they satisfy the quantum super-Virasoro algebra 

[Gc), Gf’]+ = 2L$, + ;dr&,,+,,,, 

[L$, Gt’] _ = (; - n) GE!,, 

and using the Jacobi identity 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

[GE), [Gf’,LF)]-]+ + [,), [G~),G?)]+]- 
+ p, [@‘,G$]-]+ z.z IJ (4.12) 

we get 

[LC), LP’] = ( m - n) Ly + dm3 m n +,+” (4.13) 
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Similar algebra holds for 2:’ -0) and G, Note that all other brackets vanish. Now it is 

easy to compute : @ BRST : given the commutation/anticommutation relations among 

the generators. 

= ; (d - 10) c nsq-“q,, $ $ (d - 10 + 16a) c nq-,,Q, 
n 

+ ;(d- lO)~n'X-,X,+2a~X-,A, 

+ ;(d - lO)~n%j-,ii, + ;(d - 10 t 16p)xnv-,if, 
n n 

t ~(d-10)Cn3X-,~~t2pCX-,x, (4.14) 

It is evident from (4.14) that 4 BRST is nilpotent only ii d = 10 and Q = ,0 = 0. Notice 

that we have taken the Ramond boundary condition for the world-sheet iermions. 

The same procedure could be follpwed for the Neveu-Schwarz fermions satisfying 

antiperiodic condition and we get d = 10 and a = p = l/2 in this case from : 

-2 Q ,gRST := 0. 

V. The Interacting Neveu-Schwartz-Ramond String 

Now we are in a position to investigate the consequences of the nilpotency of the 

BRST charge for the N-S-R string in a nontrivial background. The generators of the 

superconiormal transformation defined in eqs. (3.24)-(3.27) can be decomposed as a 

sum of two terms 

G, = G;) + GE) (5.1) 
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c =W+$) 
m m m (5.2) 

It, = Q’ + r;y (5.3) 

zm-w+p m m (5.4) 

where G(O), @‘, L(O) and L -a) correspond to the generators defined in eq. (4.9) and 

Gi) = $-$$-: [& bij(X)$$Pi t ~~~j(X)$~P! 

- 4, 2 !,$+y\p+f f ;w~y$~$;p: 

+ (5.5) 

$1) - 
m - -A! gym : [&b;j(X)$ZPI + i~,j(X)+iPf 

- ;ul~~*~~~& + +;p++: 

+ (5.6) 

Lp = &j $P : [;pij(x)P;Pj -;wjpGy’_p; 

+ ;tu~y~;~: (Pi + Pi) 

- ~~j;p~~~“~~~~] : 
(5.7) 

5:) = -$j f?P : [ipijpipL + iwip$T$$pj 

- $J~$y$‘_ (pi + pi) 

- fe~;~~.?f$~~~$~] : 
(5.f4 
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Now on we choose Ramond (periodic) boundary condition for the world-sheet fermions. 

The Fourier expansion of the backgrounds are 

bij(X) = J sbij(p) : eipx : 

Pij(X) = 
/ 

(5.10) 

The Fourier expansions of connections, antisymmetric field strength and the curvature 

are 

[l)lin. _ 
wi,d - i / &$ [iptp,i(p) + gpibfm(p) - iPmPti(P)] : eipx : (5.11) 

(2)&n. _ 
wi.d - i / $f$ [iptpim(p) + zp;L(b) - Gw&)] : eipX : (5.12) 

T/z = / & [id&) + ip,b&) + ipA,( : eipx : (5.13) 

-f 3 [ - P;?‘V’kj(P) + Pk?‘jPik(P) - PkPiPjC(P) t pjPtPki(p)] : eipX (5.14) 

Now we are in a position to compute the algebra of G,,E,,,, L, and z,,,. Note that 

the brackets involving G,, G,; G,,Em and L,, z,,, vanish at the classical level and 

such is the case for the free N-S-R string. However, the quantum brackets do not 

vanish in the interacting case giving rise to anomalies. We need to compute the 

following set of quantum brackets 

[GA]+ = [G:+(O)]+ + [G(OI,Gt)]+ t [G(I),G;)]+ (5.15) 
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bm,Gn]- = [4),G$ + [9),G!‘)]- + [L;),G$ (5.16) 

[GA”]+ = @‘,G?]+ + ~w]+ + ~‘,cq+ (5.17) 

p”]- = [9)&y t ~gW’]-+ p&q- (5.18) 

We have retained only linear terms in the background fields on the right hand side of 

eqs. (5.15)-(5.X3). Notice that the first term of eqs. (5.15) and (5.16) are given by 

eqs. (4.10) and (4.11) and the first term in each of the equations (5.17) and (5.18) van- 

ish. However, terms such as G(O) ‘$” [ *, n I+, b),z’]+, [Li?,?]- and [Li!),$?]- 

do not vanish automatically. Note that in the computation of the anticommutator 

of QBRST with itself we wilI have to compute the commutators/anticommutators in- 

volving L,, I,,,, G,and c,,, and the ghost fields. As mentioned earlier, the structure 

of the BRST charge in the ghost sector is the same for free as well as interacting 

N-S-R string. Therefore, it follows from the algebra of the “zeroth” order generators 

and the pure ghost sectors that critical dimension is ten, d = 10, and Q = p = 0 for 

the Ramond boundary conditions. Now we are left with the task of computing the 

commutators/anticommutators of the generators involving zeroeth order and the first 

order terms in the background fields. It is a tedious but straightforward calculation. 

The computation involving the last two terms in equations (5.15) through (5.18) are 

presented below in the final form. Some of the steps involved in these computations 

are given in Appendix B. 

[G~),G?)]+ + [G:),G;)]+ 

- : a2brm (X (z’))l/lI; (z’)$J$ (2) : Zm-lZ’n+l (z+zr)lz=z, 
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: -a%m (X (2’)) f!’ (2) +’ (z) : zZmzZhl (z + z’) 

- : a’bt,,, (X (2’)) $” (z’)& (z’) : Zm--lZ’n+l (5.19) 

[LF, G;)] _ + [L:), Gf’] _ 

m = 
( > 

-- n G:!, + 

+ ;jg, 
&3$%[- 

: a’b, (X (2’)) $7 (2’) Pi (2’) : zm-lZ’~+a 1 a==' 
: -a2pc,(~(z~))~~(r~) p!(2) : ~+-1~m+l 1 *=*I 

+ j&&[:( - i&aappm - $apa2bm( + iama2pqr) (X (2’)) 

7/l: (2’) ?J,” (2) +‘_ (2) : PflPf~ 1 *=z' 
+ &j$$[: (-i&a’b,-iaqaabd+iaabq~)(X(t’)) 

7): (2’) $7 (2’) $$ (2) : P-*Z’n+~ 1 I=., 

t $--$$I: -aspmf (x (4) tin (2) (P: (4 + pf (2)) : 9v 

- ~P~~[:(-ia,a?,,(x(,'))-~a,aa,,(x(*~))) 

7/J" (2) $J! (2) 745: (2') : zmzm cz + 4 I .J 

[Gwq+ + [s)$q+ 

= -~(~~~"~~[:-a'pl,(x(.'))~~(i)~:(s~):I~+~r~(r+l~)] 

-- : -a2pfm(x(z’))$:(-i)$$(z’) : zm(zt 2) 
I > 

(5.21) 
r=r 

(5.20) 
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- iaqaQd - ia,a*b,! > 
(x (q)qjt (i) *Y (i) 4: (f’) : ~-1~~2 1 .=*, 

-- 

- iama2ptq > (x (2)) VP (2) +T (2) +b: (2’) : z~-~P I *=., 

-I is 
dr d 
-TZ*E : 
I* 

[ (-a2Plm(X(Z’))$qi)P~(z’)) :i”-‘z(~+i)]z~z, 

( - iaka’pir(x (2’)) - i&a’& (X (z’))) 

g.(i) +k (2’) $$ (2’) : i”-‘z (z t 2) 1 > (5.22) 
z=.’ 

Notice that Xi is a function of both z and z and we have not exhibited the explicit 

z dependence for notational simplicity. The derivatives, acting on the linearized 

background fields, such as 8, and a* are to be understood as & and &$j 

respectively. We have not explicitly displayed the terms whose coefficients are &pfm 

and amp’” in equations (5.19)-(5.22) since these terms disappear when we impose 

the transversality conditions on the massless backgrounds. 

afpf* = ampfm = 0 (5.23) 

The computation of : &,,, : essentially involves the quantum superconformal al- 

gebra. It is worthwhile to point out that the algebras presented in (5.19)-(5.22) 

demonstrate the existence of q-number anomalies. These anomalies vanish when 

aspG = 0 (5.24) 

together with the transversality condition (5.23) satisfied by the linearized background 

fields. In other words, the quantum BRST charge is nilpotent when the massless 

excitations of the string are transverse and they satisfy the equations of motion along 

with the requirements of critical dimensions and intercepts, i.e. d = 10 and a = p = 0. 
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VI. Summary and Conclusions 

We have studied the propagation of the N-S-R string (closed type II) propagating 

in an arbitrary background and have quantized the theory following the formalism of 

BFV. We have only considered graviton and antisymmetric tensor background; how- 

ever, our procedure can be extended easily to account for the dilatop background. As 

was demonstrated explicitly in I, the N-S-R string satisfies classical superconformal 

algebra in the presence of arbitrary massless background fields. However, when we 

compute the quantum superconformal algebra in the weak field linearized approxl- 

mation, we encounter both c-number and q-number anomalies. The nilpotency of 

the BRST charge forces us to have a ten dimensional space time with zero intercept 

for the Ramond boundary conditions in the case of free NSR string. In the pro- 

cess of this computation we find that the super-Virasoro algebras give rise to new 

q-number anomalies mentioned earlier. These anomalies disappear when the mass- 

less backgrounds satisfy transversality condition and the equations of motion, besides 

the requirement of critical dimension and zero intercept condition which remove the 

c-number anomalies. Thus, the background encitations are not a&wed to propagate 

in any arbitrary configurations and the mass-shell and transversality conditions are 

imposed as a consequence of superconformal invariance, i.e. : f.$i,s, := 0. We have 

carried out the calculation with Ramond fermions; however, the same technique is 

applicable to the Neveu-Schwara fermions and computation simplifies considerably 

due to the absence of zero modes for the fermion sector. 
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Appendix A 

Notations and conventions: 

Greek alphabets P,Y, etc. are world sheet indices. The indices i, j,... are the 

target manifold world indices and A, B,. . . denote thetangent space indices in the 

target manifold. The two-dimensional Dirac matrices are 

p” = (71 = 
0 1 

( ) 
1 0 

ps = pop1 = (A-1) 

The charge conjugation matrix C satisfies the relation C = -CT = -C-l and we 

have C = p’. The connection 

rjk = k@ (a&j t ajG& - &Gjk) (-4.2) 

and Gij being the metric in the target manifold. The antisymmetric field strength 

tensor is 

Tijk = (&&j + &Bjk + ai&) (A.31 
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The Riemann curvature tensor is 

R;, = afrik - akrjf t r;rh - r;rk (-4.4) 

Our metric convention is (+, -) for the world-sheet and (t, -, -,...) for the space 

time and co1 = 1. 
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Appendix B 

Here we summarize the essential results that allow us computations in the inter- 

action representation. Bosons: 

xi cq, r) = qi + i pi7 + i C L (&-+~+~I + s;e-i4T-e)) 

n+iO ?a 

Pi(T=o,u)E (~+X”)(r=0,4)=~Pi+Ca~l-” 
n#O 

with z = eiu. The canonical commutation relations lead to 

[’ 1 

q’,pj = $ 

[a;,cq = [z&L&] = 6*+,,o?p 
World-sheet fermions: i) Ramond sector (periodic boundary condition). 

+; r”tJZCd,A*-” 
( n#O 1 

*II=: r*+fiC;i,Az-n 
( n#O ) 

with 

[d,“,d:]+ = [2,x]+ =f’BJm+,,o 

l?‘s are the zero modes satisfying rA, l? [I = 2p. 
+ 

ii) Neveu-Schwarz sector. 

(B.1) 

(B.2) 

(8.3) 

(B.4) 

(B.5) 

(B.6) 

(B-7) 

(B.8) 

(J-3.9) +‘A = 5 IT++; c,“L- 
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(B.10) 

Normal ordering prescriptions. 

(B.11) 

Pi (2) =: Pi (ZJ) : +@ y.&7Jij, IZI 5 12’1 (8.12) 

pi(=) : ,+X(z’,l’) :=: p;(,),ik.X(~‘,Z’) : + k’z’ 
2(” - 2’) 

: ea.x(z’ar) :, IzI > Iz’I (B.13) 

: ,ikJk’.2) : pi(*) =: ,+X(~‘J)p;(,) : -,,*v: *) : eik.X(r’J’) :, lz’l > I*/ (B-14) 

PI(“) : e ik.X(z’Z’) := p~(~),ik~X(d,Z’) : +2(~~~) : eik.X(r’vi’) :, 1~1 > I-& (B.15) 

: eikX(z’,:‘) : pi(z) =: ,ik.X(~‘Z’)p~ (5) : -2(fy2) : eik~X(z’Z’) :, 121 > 1~1 (B-16) 

Above relations hold good for bosom Now for fermions. 

a) Ramond sector 

(z + 2’) 
!m~NJ,B(~) =: ~mJ%‘) : +4(z _ *,)9 AB, I4 > lz’l 

+A (5) 4: (2) =: $A (F) 4: (2) . - ‘“_’ $1 
. 4(z-q9 

AB, 151 > I-i’1 

b) Neveu-Schwara sector 

(B.17) 

(B.18) 

~cl,“C~,%q (2’) =: $f(z)$+B (I’) : +2~~~~~,)~? 121 > 12’1 (B.19) 

$11 (q lit: (z’) =: $A (z)@ (2) : -2~~~~~~,)~~., IZI > 12’1 (B.20) 

NOW we can compute the commutation/anticommutation relations involving any gen- 

erator with the aid of the normal ordering prescriptions (B.11) _ (B.20). Let us look 
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at 
[4@.]+ = [G(o),G$)]++ p$,Gt']+ + [Gz),G")]+ 

as an example. 

Gg) = 1 
! 

!f$‘” : $,=(z)p;(z) : 9Ai 

Gt)Gc) = & f $F/ iZrn [ : 11:(*)P~(~)lrAill,“(*~)P~9Bj : 

+(z $‘?p : #(z)$+8(z’hAi9Bj : 

(’ ’ “I 
+4(* - “‘)9 

AB : P~(z)P$(z’) : VAivsj 

+;y$b] f-= ItI > 12’1 (8.21) 

where d is the space-time dimensions. Similarly, we can obtain an expression for 

Gf)G$). Then it is straightforward to calculate the [Gc), G?)]+ using the method 

of residues which gives (4.10). I n order to compute [G&?,G~)]+, we need to define 

first the product 

+~b,j(p) : ~i”x”““~C(Z’)P~(*‘) : +1&j(p) : e”‘x”‘,“)~,i:(*‘)P~(i) : 

:( iplpjm(p) + zpjbd(p) - iP,pj<(p)) : e”X”““‘~C(z’)~t”(?i’)~)t(z’) : -- 

+i 
( 

iptpmj(p) + $pjblm(p) - ip,plj(p) 
1 

: e”x(~‘,~)~((~‘)~“(~‘)~~(*‘) : 

f- z”k”, {ipjbrnt(p) + ipmbtj(p) + iplbjm(p)} : ~~~“““~“~((~‘)~~(=‘)~~(~‘) : )] , 1~1 > Iz’[ 

(B.22) 
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We shall demonstrate how the contraction of a single term takes place in (B.22) as 

an example. 

= ~b,j : ~,“(z)P~(~)~~~~‘P.~“~“‘~((Z()P~(~’) : 
( 

+ : p~(*)~i’X(=‘,“)p~(*l) : 9Ai9Aj (* i- *‘) 

4( 2 - 2’) 
I 

+ : lit+A(z)eip.X(.‘,~‘)~((zI) : ;:“‘:r2 

+ : ~=(*)~i”x”““‘~,i(*‘p~(*f) : 2(:f,) 

+ . e+X(=‘.ZY . . 9Ai9Aj9iq **‘(* + *‘I 

(I - 2’)s 

+:e +xC~‘,:‘)p~(*y : 9Ai9Aj ‘i($” $‘)) (B.23) 

Similar contraction is carried out for all other terms in (B.22) and finally [Gc), G?)]+ 

and [ I+ Gi) , Gp) are computed. 
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